Wireless Network Security and Privacy Autumn 2023

#### Xiaoyu Ji Wireless Transport Security

1



• Fun issues at the wireless transport layer

• Transport-oriented attacks

# **Transport Layer**

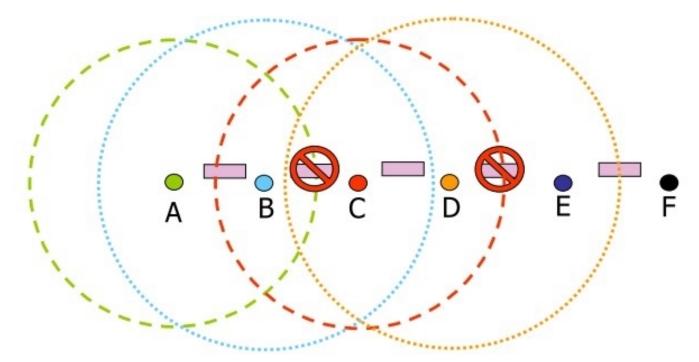
- Transport layer is responsible for managing end-toend content delivery
  - Connection-oriented communication
  - Reliability
  - Flow control
  - Congestion avoidance
  - Multiplexing
  - Ordered delivery
- What do you think of transport?
  - TCP
  - UDP

3

# Wireless Multihop Transport

- Transport performance is affected by all protocols living below it
  - Physical layer
    - Errors can be misinterpreted by transport mechanisms: one of the big reasons TCP has difficulties in wireless
  - -MAC
    - No collision detection → Transport flows suffer from inter- and intra-flow contention

#### Network layer


- Transport sessions live only as long as routing paths; path maintenance → session maintenance
- Mobility: path disconnection/loss causes different behaviors in different routing protocols, all of which affect transport

# Phy → Transport Impact

- TCP interprets errors and tries to mitigate their effects using congestion control
  - CSMA/CA vs. CSMA/CD
  - But, it usually can't distinguish congestion loss from transmission errors
  - Congestion control may be invoked when not needed
  - TCP + transmission errors  $\rightarrow$  reduced throughput

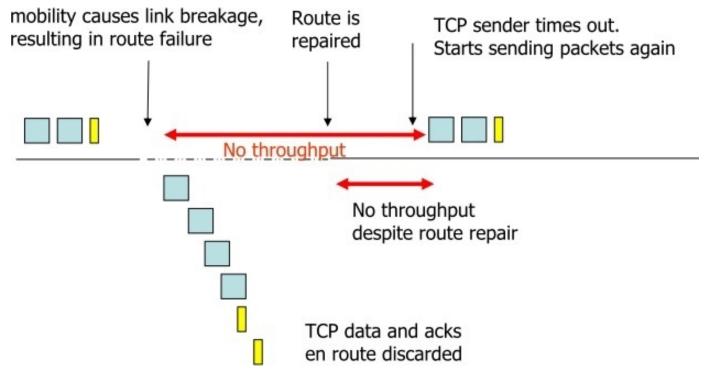
#### MAC → Transport Impact

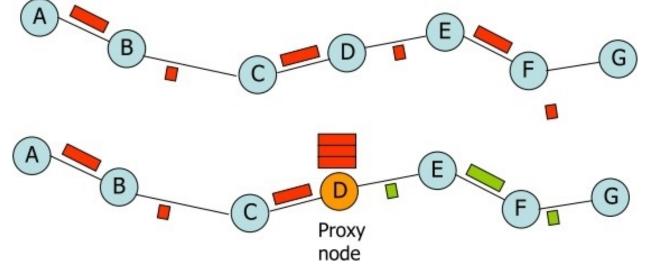
- More hops/path means more medium usage
  - Increased competition for medium, even among nodes in the same routing path
  - Higher interference and hidden/exposed terminals



# Mobility → Transport Impact

- Node mobility leads to route changes
  - Route can fail, data lost on old route, new route formed,
    TCP timeout starts data on new path, over and over





Image source: [Vaidya, Infocom 2004]

# **Routing** $\rightarrow$ **Transport Impact**

- Route caching interferes with TCP (e.g., in DSR)
  - Multiple routes stored to reduce discovery overhead
  - At network layer, source scans for a live route
    - Older routes may have been broken due to mobility, etc.
    - Successive TCP timeouts, lack of data traffic during scan of the cashed routes
  - Instead:
    - Deactivate route caching
    - Explicit link failure notification (TCP-ELFN)
    - Explicit congestion notification or ICMP unreachable messages (ATCP)

# Split TCP

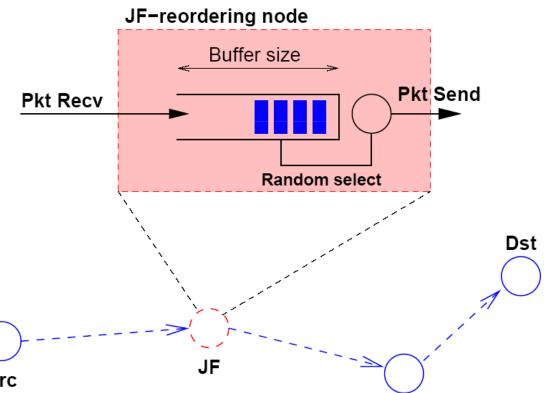
- In mixed wired/wireless:
  - TCP runs only at the end-points and at a proxy at the wired/wireless border
  - Proxy accelerates traffic through wired domain
- In wireless multihop:
  - Proxies can be similarly used to split into short paths



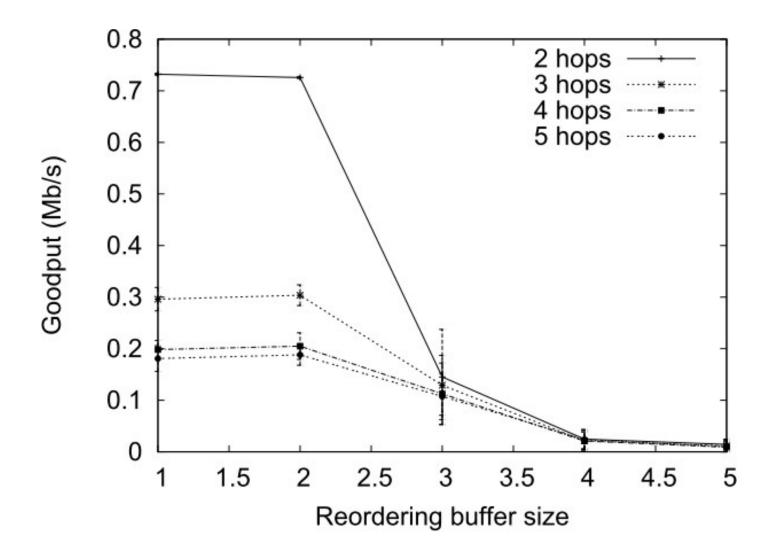
# Split TCP Pros/Cons

- Pros:
  - Improves multi-hop TCP opportunity using shorter loops and faster evolution
  - Retransmissions follow shorter paths, saving energy and reducing interference
- Cons:
  - Breaks E2E, so no longer compatible with end-to-end security such as IPSec
  - Increased buffering at proxies, required greater intelligence at intermediate nodes
  - Route changes/breaks require proxy changes

#### Misbehavior

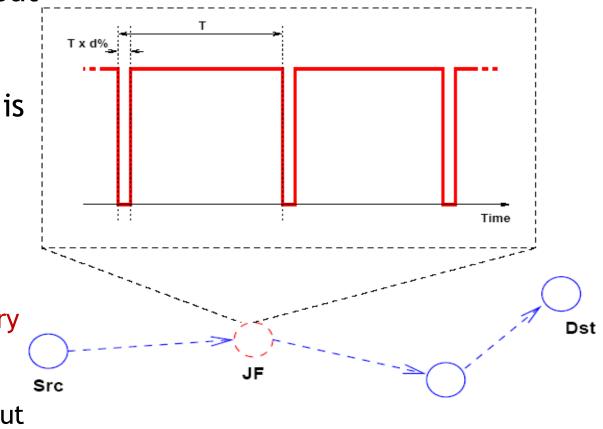

## **JellyFish Attacks**

[Aad, Hubaux, and Knightly; MobiCom 2004]


- JellyFish (JF) attacks target congestion control used in many TCP and UDP variants
  - JF attacks comply with all control and data plane protocol requirements except for targeted malicious actions including:
    - Re-ordering packets
    - Periodically dropping packets
    - Increasing delay variance

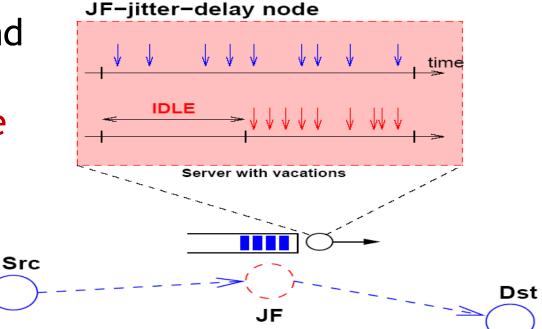
# JF Re-ordering

- TCP uses cumulative ACKs for efficiency and rely on duplicate ACKs to detect loss or out-of-order reception
  - All TCP variants assume that packet re-ordering is a relatively rare and short-lived event
- JF Re-ordering attack
  - Deliver all packets but using a re-ordering queue instead of a FIFO Src queue

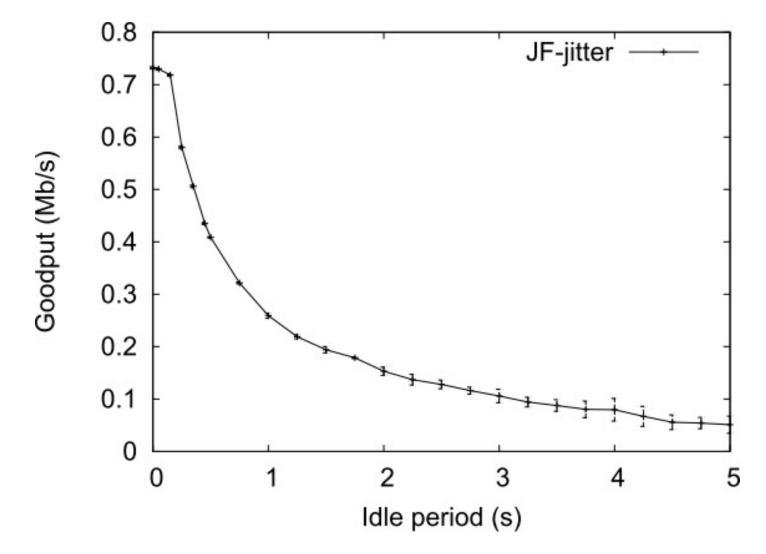



#### Impact of JF Re-ordering




# JF Periodic Dropping

- If packet loss occurs periodically near the retransmission time out scale (~1s to address severe congestion), then E2E throughput is nearly zero
- JF periodic dropping attack
  - Drop packets for a very short duration with period near the retransmission time out




# JF Delay Variance

- Round-trip times vary due to congestion, and this variance is measured to estimate important protocol parameters
- JF delay variance attack
  - Inject random delay in forwarding each packet, maintaining order, but increasing delay variance



#### Impact of JF Delay Variance



### **Detection of JF Attacks**

- Detection relies on ability to monitor forwarding behavior
  - Using passive ACK or "overhearing" (e.g., Watchdog)
  - Lots of analysis and simulation in the paper
- Upon detection, victim can:
  - Change routing path
  - Switch to multi-path routing
  - Create backup routes to use when performance drops

# What about transport protocols other than TCP and UDP?

### WSN Transport Reliability

#### [Buttyán and Csik; PerSens 2010]

- Researchers have proposed many alternative transport mechanisms for WSNs
  - ACK-based approaches, either on an end-to-end or hopby-hop basis
- Transport-layer attacker
  - Eavesdrops on communications in the network, forges and injects transport-layer control messages
    - 1. Attacks against reliability
    - 2. Energy depletion attacks

# Summary

- Transport-layer misbehavior types and potential defenses
  - Jellyfish attacks and protocol-compliant misbehavior in TCP and reliable UDP settings
    - [Aad et al.; MobiCom 2004]
  - Misbehavior in alternative transport protocols for wireless sensor networks
    - [Buttyan and Csik; PerSens 2010]